

Serie 04

Preamble

PN-junction under bias

In the previous series, we derived the charge, electric field, and electric potential distributions in a PN-junction at thermal equilibrium. By applying a bias to this junction, these previously calculated distributions will change. Since the semiconductor is conductive outside the space charge region (**SCR**), no electric field can exist in these regions. This implies that any potential applied to the PN-junction will directly affect the potential in the SCR. Essentially, we can rewrite the previous equations by replacing the built-in potential ϕ_b with the built-in potential ϕ_b minus the applied forward voltage V_F .

Given constants

$$n_i(Si) = 1.5 \cdot 10^{10} [cm^{-3}] \quad @ \quad T = 300 [K]$$

$$k = 8.62 \cdot 10^{-5} [eV/K]$$

$$q = 1.60 \cdot 10^{-19} [C]$$

$$\epsilon_0 = 8.85 \cdot 10^{-14} [F/cm]$$

$$\epsilon_{Si} = 11.7 \cdot \epsilon_0$$

Exercise 01

We consider a PN-junction with known dopant concentrations of $N_A = 10^{16} [cm^{-3}]$ for the P-type region $N_D = 10^{15} [cm^{-3}]$ for the N-type region. At room temperature, with an applied forward bias voltage of $U = -5 [V]$, find the depletion width and the maximum electric field.

Exercise 02

Find the concentrations of dopants N_a and N_d of a PN junction using the room-temperature Mott-Schottky plot given below. Assume that the N-type and P-type regions are doped only with their respective dopants. The slope of the graph is $\alpha = -1350 \left[\left(\frac{\mu F}{cm^2} \right)^{-2} V^{-1} \right]$ and the intersection with the horizontal axis is $V_0 = 855 [mV]$. Your hypothesis is that the diode is asymmetrically doped ($N_a \gg N_d$). Verify this hypothesis.

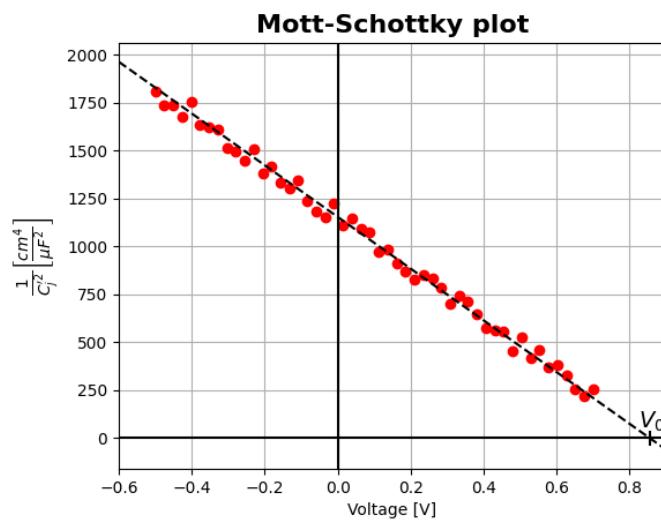


Figure 1: Mott-Schottky plot.

Exercise 03

As an electrical engineer, you are tasked with designing a VHF transmitter operating on the guard frequency (reserved for aircraft emergencies) at $f = 121.5 \text{ [MHz]}$. To achieve this, you decide to use the depletion capacitance of a diode (used as a varicap) to select the frequency in a simple LC oscillator.

The selected diode is a silicon diode with uncompensated doping, operating at room temperature, with the following dopant concentrations: $N_A = 4 \cdot 10^{16} \text{ [cm}^{-3}\text{]}$ and $N_D = 8 \cdot 10^{15} \text{ [cm}^{-3}\text{]}$ for the p-type and n-type regions, respectively. The p-n junction of the diode has a total length of $L_D = 900 \text{ [\mu m]}$ and a circular cross-section with an area of $A = 1 \text{ [mm}^2\text{]}$. The chosen inductance is $L = 12 \text{ [nH]}$.

Find the bias voltage required to tune the transceiver to the correct frequency.

Hint: As a reminder, the resonance frequency of an LC circuit is given by:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \quad (1)$$

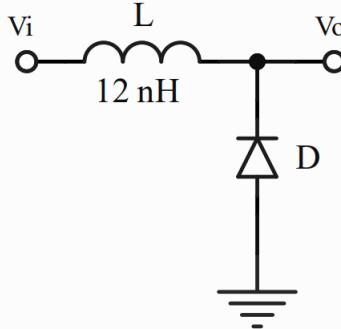


Figure 2: Basic LC resonator schematic.